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Abstract. We investigate the quantum-mechanical tunneling between the “patterns” of the, so-called,
associative neural networks. Being the relatively stable minima of the “configuration-energy” space of the
networks, the “patterns” represent the macroscopically distinguishable states of the neural nets. Therefore,
the tunneling represents a macroscopic quantum effect, but with some special characteristics. Particularly,
we investigate the tunneling between the minima of approximately equal depth, thus requiring no energy
exchange. If there are at least a few such minima, the tunneling represents a sort of the “random walk”
process, which implies the quantum fluctuations in the system, and therefore “malfunctioning” in the
information processing of the nets. Due to the finite number of the minima, the “random walk” reduces to
a dynamics modeled by the, so-called, Pauli master equation. With some plausible assumptions, the set(s)
of the Pauli master equations can be analytically solved. This way comes the main result of this paper:
the quantum fluctuations due to the quantum-mechanical tunneling can be “minimized” if the “pattern”-
formation is such that there are mutually “distant” groups of the “patterns”, thus providing the “zone”
structure of the “pattern” formation. This qualitative result can be considered as a basis of the efficient
deterministic functioning of the associative neural nets.

PACS. 02.50.Ey Stochastic processes — 05.40.-a Fluctuation phenomena, random processes, noise, and

Brownian motion

1 Introduction

Neural networks are currently the most successful model
in cognitive neurosciences [1,2]. Presently, the “physics of
neural nets” distinguishes the two main approaches to the
issue. First, and there is a vast literature [1-4] (and ref-
erences therein) in this concern, there is the “classical”
approach, which considers the neural nets as the classic-
physics objects, i.e., as the fully deterministic physical sys-
tems. This approach particularly assumes that the infor-
mation processing (the dynamics) of the neural nets bears
the classic-physics reality, determinism and locality [5].

On the other hand, it is argued [6] that the dynamics of
the neural nets should be modeled quantum-mechanically,
assuming the full quantum-mechanical treatment of the ex-
isting “classical” models of the neural nets.

In this paper we argue for another, still not fully ex-
plored approach to the issue. Particularly, we propose
to consider the neural networks as the classic-physics
systems, and to investigate the quantum-mechanical cor-
rections to their deterministic dynamics, coming from
the well-known effect of quantum-mechanical tunneling.
This is really an “intermediate” approach in physical
modeling of the dynamics of neural networks which is not
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a new idea. Rather, our proposal is analogous to the pro-
grams [7] of investigating the “border territory between
quantum and classical”, still with some special character-
istics.

We are particularly concerned with the quantum cor-
rections of the deterministic dynamics (information pro-
cessing) of the, so-called, associative (or attractor) neu-
ral nets (cf., e.g., Kohonen [3], Amit [3], Beale and
Jackson [4], just to mention some). Our strategy is as
follows: we start from the classic-physics models of the
associative neural nets, and investigate the process of
quantum-mechanical tunneling in the system, posing the
question of “minimizing” the quantum fluctuations, which
are due to the tunneling.

This strategy can be justified as follows.

The physical states of the associative neural nets can
be represented in the “configuration-energy (¢—V')” space
(¢f., e.g., Hopfield [3]) — Figure 1. Each point on the hor-
izontal axis represents a unique configuration, denoted
by the vector q. The heights in vertical direction repre-
sent the values of the potential energy of each configura-
tion. The vector q = (g1, g, ...) determines the state of
the network as a whole. Each “coordinate” ¢; describes
exactly the state of each constituent neuron, or of each
the synapse in the network. Further, we shall not specify
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Fig. 1. The local minima of the presented “configuration-
energy (¢ — V)7 surface represents the “patterns” — well-

defined, macroscopically distinguishable physical states of the
nets. The black ball represents the “particle” oscillating with
frequency w, around the bottom of the well. Unfortunately,
the parameters of the ¢ — V' plot, wo, Vs, dg, are not generally
known.

the meaning of the index “i”, assuming applicability of

our results to the both, neuronal (short-term) and synap-
tic (long-term) storage of the informations. For simplicity,
we shall further identify q with its “length”, ¢, thus for-
mally dealing with one-dimensional system.

According to the above assumption, the position of
the black ball (the “particle”) in Figure 1 should be con-
cerned as a classical state of the neural network. This state
is unique, in the sense that in an instant ¢, the state ¢
is known with certainty. This is a basis of deterministic
functioning of the networks: the “particle’s” trajectory is
unique, bearing unique prescription between the positions,
q’s, and the instants, t’s. Certainly, moving of the ball is
driven by external stimuli, and results in the complex pro-
cess of the “pattern”-formation and/or of the “pattern”-
recognition.

More precisely: the dynamics can be considered as a
continuous change of the energy surface (plot) by the mov-
ing ball, whose movement is driven by external stimuli. As
a net effect, the ball finally centers around the bottom of
a potential well (e.g., ¢1 in Fig. 1), which is a “pattern”
— well-defined macroscopic state of the neural network.
For some time interval, Tyap, the energy surface (¢ — V
plot) stays intact (unchanged). After this time interval,
the “particle” becomes an object of other external stim-
uli, which force the “particle” to move, and (usually) to
change the actual ¢ — V surface. For this, subsequent dy-
namics, the state ¢; is the initial state.

In general, the ¢ — V plot (surface) has several poten-
tial wells (the “patterns”), and at this point arises the
next question: if the neural networks can exhibit some
quantum-mechanical behavior at all, whether the “parti-
cle” can “tunnel” between the “patterns”, during the time
interval Tgap? This question bears some subtleties to be
discussed below. Let us assume that the tunneling is pos-
sible. Then, according to the (hypothesis of the) universal
validity of quantum mechanics [5-7,9,11-13], the tunnel-
ing appears unavoidable. And its consequences for the pro-
cessing of informations in neural nets are rather obvious:
after the tunneling from, e.g., g1 to ¢o, the subsequent
dynamics would start from the state g, instead of from
the — classically unique — state g1, thus breaking the clas-

The European Physical Journal B

sical determinism. This is really a quantum-mechanical
effect, which does not have a classic-physics counterpart,
and which causes “malfunctioning” of the neural networks.

At this point arises the question of distinguishing the
tunneling from the concurrent the classical effects [7,10].
Namely, the “particle” (¢f. Fig. 1) can (probabilistically)
pick up an amount of energy from the heat bath which
could be sufficient for the “particle” to skip out of the
potential well, thus, prima facie, making the transition
(see also Sect. 2) similar to the above distinguished effect
caused by the tunneling. With this regard we refer to the
Leggett’s approach [7], in which it is strongly (and virtu-
ally independent on the particular context) stressed that,
so as to be able to observe the “pure” tunneling, it is nec-
essary to suppress the classical activation. (Typically, it
requires very low temperature, and choosing the parame-
ters of the system so as to avoid the applicability of the
“correspondence principle”.) With this regard, the quan-
titative results concerning the tunneling in the neural nets
requires the precise values of the parameters wo, Vs, dq (cf.
Fig. 1). Unfortunately this is not generally the case. So,
our considerations will be restricted to the general, and
rather qualitative considerations, with an emphasis on the
possibility to extending the considerations, once the more
quantitative results concerning the ¢ — V' plot are known.

The plan of this paper is as follows. In Section 2 we
show that the problem of the tunneling reduces onto the
stochastic process which can be dynamically modeled by
the, so-called, Pauli master equation [8]. Due to the fact
that ¢ — V plot is rather qualitative, in Section 3 we give
analytical solutions for the typical g—V plots. In Section 4
we discuss the results obtained, paying a special attention
to the assumptions (and simplifications) underlying the
models considered. Section 5 is conclusion.

2 Dynamical model of the tunneling
in associative neural networks

It is worth repeating: a “pattern” is a local minimum
(potential well) of the ¢ — V configuration (plot) which
bears stability for the period of time, 7gap. It is an explicit
macroscopic state of a neural network (as a whole) which
bears the classical reality and determinism, which partic-
ularly guarantees that the “particle” remains captured in
the potential well, eventually oscillating with some fre-
quency w, around the bottom of the well (¢f. Fig. 1).

However, if the “particle” is genuinely a quantum-
mechanical system, then, at least in principle, some
quantum-mechanical effects might take a part in its dy-
namics, really breaking (or correcting) the determinis-
tic behavior. And we are particularly interesting in the
quantum-mechanical tunneling. This is a natural guess
also in the programs (cf., e.g., Leggett [7]) of investigat-
ing the quantum-mechanical behavior of the macroscopic
(“classical”) physical systems: if the tunneling can ever
occur, it proves unavoidable.

The issue whether the tunneling can ever occur in
the associative neural networks is really a subtle ques-
tion. Here we assume the possibility of the occurrence of
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the tunneling, and investigate the consequences. It proves
that the tunneling in the associative neural nets can be
dynamically modeled by the Pauli master equation [8], to
be analytically solved in the next section.

2.1 Quantum-mechanical tunneling

The main question concerning the quantum-mechanical
tunneling in macroscopic systems is whether the tunneling
can ever occur in a system, whose behavior is usually con-
sidered to be fully deterministic (“classical”). This ques-
tion is a matter of both, of principle, and of the details in
the model of the system. It is almost a general strategy
in investigating the quantum-mechanical effects in macro-
scopic systems to adopt, as a matter of principle, that the
ultimate physical nature of the macroscopic systems is its
the quantum-mechanical nature — the above mentioned
universal validity of quantum mechanics. And then, it is a
matter of the details in a model of the system to investi-
gate the occurrence of some typical quantum effects. This
is exactly our strategy distinguished in Section 1.

The standard (textbooks’) physical situation concern-
ing the tunneling assumes that the “particle” is in a quan-
tum state, the mean energy of which is insufficient for over-
coming the existing potential-energy barrier, and which is
therefore classically bounded by the barrier. The tunnel-
ing, certainly, assumes the particle’s “escape” to the con-
tinuum (free particle), which (contrary to the activation
process [10]) is not caused by the external stimuli.

However, as it is clearly presented by Figure 1, the
tunneling between the “patterns” represents a tunneling
between the bound states. Being the tunneling between
the macroscopically distinguishable states, it is analogous
to the well-known MQT (macroscopic quantum tunnel-
ing) effect in the superconducting devices (SQUIDs, and
CBJs) [7,9]. Unfortunately, while the MQT effect is fol-
lowed by the highly semiclassical behavior [7], the tunnel-
ing between the “patterns” does not terminate with the
semiclassical dynamics. To illustrate this, let us consider
the ¢ — V plot in Figure 2.

Let us assume that, as presented in Figure 2b, the
“particle” is initially in the well ¢;. Its tunneling to, for
instance, the well g¢o, represents a stochastic “quantum
jump”, i.e. an indeterministic transition g1 — ¢2. Once
being in the well g9, the “particle” can proceed in tunnel-
ing, e.g., from go to the well g3, or (with some probability)
to turn back to the well ¢1, and so on. Certainly, this se-
quence of the tunnelings stops with the elapse of the time
interval Tgap.

The tunneling probability, P;;(t) (i-initial, j-final
state), depends on the details in the model. First, so as
to be able to see whether the tunneling is possible at all,
one should [7] precisely know the values of the parameters
(cf. Fig. 1), V5, 8¢, wo. Unfortunately, this is not generally
the case. Second, it is also a matter of relative depth of
the wells. Particularly: as it is well-known [10], if the ini-
tial well is “deeper” than the one to which the “particle”
should tunnel to, the transition requires external influence
(the, so-called, activation process), which is purely the
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Fig. 2. A realistic ¢ — V plot, (a), is simplified (idealized) by
(b). To justify this idealization it suffices that the minima in (a)
are of only approximately equal depth, while |g;+1—¢;| = dq, Vi.
Then one may forget about the particular shape of the plot
between the minima (q1, g2, ¢3), just taking care about the
height of the potential barriers, likewise the mutual distances
between the minima, in the given physical units. Certainly (cf.
Sect. 4), if there are no such (mutually approximately equal-
depth) minima, this model cannot be employed.

classic-physics effect: then the “particle” picks up some
amount of energy from the “heat bath”, necessary for the
energy balance. Therefore, the tunneling can occur if the
two wells are of approximately equal depth, or when
the initial well is of the less depth than the “final” well —
which is known as the “quantum hopping effect” [7].

Due to the fact that the necessary details concerning
the form of the ¢ — V plot are not generally known, we
shall restrict ourselves to the cases qualitatively presented
by Figure 2b: a few, relatively close, equal-depth poten-
tial minima. Certainly, this is an idealization, but its rele-
vance concerning the realistic cases will be distinguished in
Section 4.

Finally, it is important to emphasize: the tunnel-
ing we are concerned with refers exactly to the transi-
tions between the “patterns”’, and does not take into ac-
count the transitions from/to the coherent states, which
represent the quantum-mechanical interferences of the
macroscopically distinguishable states (which would be an
analogue of the MQC (macroscopic quantum coherence)
effect [11]). This is in accordance with the assumption
(¢f. above and in Introduction) that the neural networks
represent the macroscopic physical systems. According to
the theory of decoherence [12], the macroscopic systems
are open quantum systems which are the objects of the de-
coherence effect [7,12], which destroys the superpositions
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(coherence) of the macroscopic states on a rather short
timescale. (Note: the effect of decoherence on the tunnel-
ing process will be distinguished in Sect. 4.)

2.2 Relevance of the Pauli master equation

As it was distinguished above, in the time interval Tg¢ap,
the tunneling (if it can occur at all) proves unavoidable.
Actually, one may expect the tunneling effect to occur
in a rather short time interval, 7i,,; more precisely, by
Ttun We assume the time interval in which the tunneling
probability, P;;(t), becomes comparable with unity.

If the ratio Tstab/Ttun iS neither greater, nor of the or-
der of unity, there is a finite probability for the “parti-
cle” to make few the transitions (for instance, 1 — ¢o,
then g — g3, etc.). On the other hand, if one may state
Tstab/Ttun 3> 1, then the “particle” can make many (in the
limit Tstab/Ttun — 00, infinitely many) the transitions.

The sequence of these transitions represents a stochas-
tic process: the well-known “random walk” process. Fur-
ther, we shall be concerned only with the finite num-
ber of the potential wells, which makes the methods
of the “renormalization group” inappropriate, and really
unnecessary.

Actually, the dynamics is such that: given an initial
state ¢;, with (nonzero) probability, P;;, the “particle”
can be found in the state ¢; in an instant ¢, and then, in
an instant ¢’ > t, with (nonzero) probability, Pji, to make
transition to the state g, etc. Fortunately, this kind of
the stochastic process can be dynamically modeled by the,
so-called, Pauli master equation [8]:

dP,
Tm = § anPn - § Wman- (1)
n(#m) n(#m)

In equation (1), P, represents the probability of finding
the “particle” in the state (potential well) m in an in-
stant ¢, while W,,,, represents the tunneling “velocity”:

dPon

mn — ) 2
w, " (2)

where P, represents a (time dependent) probability for
tunneling from the state m to state n. It is usually
considered:

Wmn = anv (3)

the well-known microreversibility condition. Certainly,
there is the constraint:

ZH =1, Vt. (4)

Clearly, equation (1) distinguishes increase of P, due to
the transitions ¢, — ¢m,n # m, and the decrease of P,
due to the transitions g, — gn,n 7# m.
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2.3 The task

The problem of investigating the quantum-mechanical
tunneling in the associative neural networks reduces to
the formal task of solving a set of the mutually coupled
the Pauli master equations. Particularly, we are interest-
ing in the next problem: which form(s) of the ¢ —V plot
provides a basis for minimizing the quantum fluctuations
(due to the tunneling) in the information processing in the
networks?

As a quantitative measure of the quantum fluctuations
it is convenient to use the Gibbs-von Neumann entropy,

S [13]:

S=-kY PP, (5)

where P; represents the probability of finding the “parti-
cle” in the ith well in an instant ¢. Therefore, the task of
“minimizing” the quantum fluctuations is really a task of
“minimizing” the increase of entropy — which we shall be
concerned with in Section 3.

3 Solutions of the Pauli master equations

Due to the lack of precise quantitative informations con-
cerning the form of the ¢ — V plots (Figs. 1 and 2), we
shall consider some typical ¢ — V' models. For the sake of
simplifying the calculation, we shall introduce some sim-
plifications to be justified in Section 4.

3.1 Simplifications

We deal with the next plausible simplifications concerning
the general form of the Pauli master equation: (i) we as-
sume that only the transitions between the neighbor wells
are effective (i.e., we shall not consider the transitions,
e.g., 1 — qs, etc.), (ii) we assume that Wy, = W =
const., Vm,n, and (iii) the ratio 7stab/Teun ~ 10.

Then the task reduces to solving the set of the coupled
linear differential equations of the type:

dP,

T = m+1,um+1 + Wm—l,mpm—l

- m,m+1Pm - Wm,mflpm
= W(Ppy1+ Po1 — 2P). (6)

Having the analytical expressions of the probabilities Py,
we shall numerically calculate their values in the instant
Tstab, thus obtaining the possibility for calculating the cor-
responding values of entropy, S, whose increase is due to
the tunneling process. (Note: according to the above point
(iil), in the interval Tstab, on average, the system can make
ten transitions.)



M. Dugi¢ and D. Rakovié: Quantum-mechanical tunneling in associative neural networks

3.2 Solving the equation (6)

For the future purpose, and without loss of generality, we
shall be concerned with the next cases: (a) three equal-
distant, equal-depth wells, (b) six equal-distant equal-
depth wells, and (c) three mutually “distant” groups of
the pairs of equal-depth wells.

3.2.1 The case (a)

We consider the three minima (c¢f. Fig. 2b), ¢1,¢2,gs,
¢i+1 — ¢ = 0q, Vi, j. Then equation (6) leads to the next
set of equations:

P =W(P,— P)
Py =W(P, + Ps — 2Py)
Py =W(P, — P) (7)
while P, + P,+ P; =1, and P, = dP;/dt.
This set of equations can be easily solved. For instance,

substituting P; + Ps = 1 — P in equation (7), the second
equation becomes:

Py =W —3WP,. (8)
So one obtains:
P, =1/3(1 — Cy exp(—3Wt)). 9)
Further, one directly obtains from (7):

d(P — Ps)

=-W(P, — P
dt W( 1 3)7

which leads to the solution:

P1 — P3 = Bl exp(—Wt). (10)

From equations (9, 10) it directly follows:

Py =1/34(C1/6) exp(—3Wt) + (B1/2) exp(—Wt)
Py, =1/3—(C1/3) exp(—3Wt)
Py =1/34 (C1/6)exp(—3Wt) — (B1/2) exp(—=Wt).
(11)
Let us consider the different the initial conditions: P;(t =

0) =1, and Py(t =0) = 1.
Respectively, one obtains:

Py =1/3+ (1/6) exp(—3Wt) + (1/2) exp(—Wt)
P, =1/3—(1/3) exp(—3Wt)

P;=1/34(1/6) exp(—3Wt) — (1/2) exp(—Wt) (12)
and
P, =1/3—(1/3) exp(—3Wt)
Py =1/3+ (2/3) exp(—3Wt)
P;=1/3 — (1/3) exp(—3Wt). (13)
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Fig. 3. Six, equal-depth, equal-distance minima, i.e., |gi+1 —
| = dg, Vi.

It is obvious that in the limit ¢ — oo (which is equivalent
with the limit 7gtap /7tun — 00) both sets of the solutions
lead — as it can be plausibly expected — to the “equilib-
rium” probability distribution:

P, =1/3, Vi. (14)
This probability distribution corresponds to the maximal
value of entropy:

Smax = k1n3. (15)
However, for 7sab/Ttun = 10, it should be numerically
calculated. To this end it is convenient (and sufficient) to
note that the product Wt can be estimated as:

1
Wt = —t.
T

(16)
This convenience follows from the next reasoning: if W can
be considered as the average tunneling “velocity”, then T
represents interval for which the tunneling probability ap-
proximately equals unity; that is, T" = 7yun. Now, setting
t = Tstab, due to the point (iii) of Section 3.1, instead
of the product Wt one should simply put the numerical
value 10.

With this substitution one obtains the value:

S ~ 1.099k, (17)
for both solutions, (12) and (13).

It is interesting to note that, up to the numerical error,
one may state In 3 &~ 1.099. That is, in this case the system
approaches the maximal value of entropy.

3.2.2 The case (b)

We are concerned with the six equal-distant, equal-depth
wells, qualitatively presented by Figure 3.
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Then equation (6) leads to the next set of the
equations:

P, — P)

P;+ P — 2P,
Py + Ps — 2P5

(

(

(P2 + Py —2Ps
(

(

(Ps — Ps).

S ST

P =
P =
Py =
Py =
P =
P = (18)

This set of equations can be solved in few ways.
For instance, one may introduce the next variables:

r=P1+F, y=P+DP, z=PFP+PF,, (19a)
a:P1—P6, b:PQ—Pg,, C:P3—P4, (19b)
with the inverse relations:
Pi=(2+a)/2.Ps = (z—a)/2,Pr = (y +b)/2, (200)
P5:(y—b)/Z,P32(2+C)/2,P3:(Z—C)/Q. (20b)

Then equations (18) transform into the next set of the
differential equations:

&=W(y—x)
j=W —3Wy

z=W(y—2) (21a)

while

a=W(b-—a)
b=W(a+c— 2b)

¢=W(b-3c). (21b)

Equations (21a) can be solved in full analogy with the
case (a), thus leading to the solutions:

x=1/34 (a1/6) exp(—3Wt) + (a2/2) exp(—Wt)
y=1/3 - (a1 /3) exp(-Wt)
z=1/3+4+ (a1/6) exp(—3Wt) — (a2/2) exp(—Wt). (22)

Yet, the equations (21b) cannot be analogously solved.
But bearing in mind the form of the above solutions, one
may employ the Fourier transform, looking for the solu-
tions in the form:

alt) = / a(q) exp(—qt)dg, (23)

and analogously for b(t) and for c(t).

Substituting equation (23) into equation (21b), and af-
ter some algebra, one obtains the set of the linear algebraic
homogeneous equations. The nontrivial solutions to these
equations correspond to the next set of the values of ¢:

q € {0.268W; 2W; 3.732W'},
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which give the solutions:

a(t) = —aexp(—2Wt) — 0.3668 exp(—3.732WT)
+ 03667 exp(—0.268W1)

b(t) = aexp(—2Wt) 4+ Bexp(—3.732Wt)
+ vexp(—0.268Wt)

c(t) = —aexp(—2Wt) + 1.366 5 exp(—3.732Wt)

+ 0.366y exp(—0.268Wt). (24)

Substitution of equations (22, 24) into equations (20) is
straightforward. Let us therefore consider the two different
the initial conditions, P;(t = 0) =1, and P5(t =0) = 1.

Respectively (and up to the numerical error), one
obtains:

Py =1/6+ (1/12) exp(—3Wt) + (1/4) exp(—Wt)
+0.211 exp(—2W¢) + 0.106 exp(—3.732W¢)
+ 0.183 exp(—0.268Wt),
Ps =1/6+ (1/12) exp(—3Wt) + (1/4) exp(—Wt)
— 0.211 exp(—2Wt) — 0.106 exp(—3.732Wt)
— 0.183 exp(—0.268Wt),
P, =1/6—(1/6) exp(—3Wt) — 0.211 exp(—2Wt)
— 0.289 exp(—3.732Wt) + 0.5 exp(—0.268Wt),
Ps =1/6— (1/6) exp(—3Wt) + 0.211 exp(—2Wt)
+ 0.289 exp(—3.732Wt) — 0.5 exp(—0.268Wt),
Py =1/6+ (1/12) exp(—3Wt) — (1/4) exp(—Wt)
+0.211 exp(—2Wt) — 0.394 exp(—3.732W1)
+ 0.183 exp(—0.268Wt),
Py =1/64 (1/12) exp(—3Wt) — (1/4) exp(—Wt)
— 0.211 exp(—2Wt) 4 0.394 exp(—3.732Wt)

— 0.183 exp(—0.268Wt), (25)
and
Py =1/64 (1/12) exp(—3Wt) — (1/4) exp(—Wt)
+0.155 exp(—2Wt) — 0.106 exp(—3.732W1)
— 0.049 exp(—0.268W1),
Ps =1/64 (1/12) exp(—3Wt) — (1/4) exp(—Wt)
— 0.155 exp(—2Wt) + 0.106 exp(—3.732W¢)
+0.049 exp(—0.268W1),
P, =1/6—(1/6) exp(—3Wt) — 0.155 exp(—2Wt)
+ 0.289 exp(—3.732Wt) — 0.134 exp(—0.268Wt),
Ps =1/6—(1/6) exp(—3Wt) + 0.155 exp(—2Wt)

— 0.289 exp(—3.732Wt) + 0.139 exp(—0.268Wt),
Py =1/64 (1/12) exp(—3W1t) + (1/4) exp(—Wt)
+0.155 exp(—2Wt) + 0.395 exp(—3.732W¢)
— 0.049 exp(—0.268W1),
Py =1/6 + (1/12) exp(—3Wt) + (1/4) exp(—Wt)
— 0.155 exp(—2Wt) — 0.395 exp(—3.732Wt)
+ 0.049 exp(—0.268Wt).
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Fig. 4. Three groups of the pairs of equal-depth minima. Note:
we assume that g1 — g2 = g3 —q4 = ¢5 — g6, while g2 —q3 = q1 —
g5 > q1 — q2. This is also an idealization of the realistic cases,
fully analogous to the idealization presented by Figure 2b.

It is obvious that in the limit ¢ — oo, the both sets of the
solutions lead to the “equilibrium” distribution:

P, =1/6, Vi. (27)
which corresponds to the maximal value of entropy:
Smax = kIn6 ~ 1.79k. (28)
However, for Wt = 10 one obtains, respectively,
S ~ 1.49k, (29)
and
S" ~ 1.79k. (30)

3.2.3 The case (c)

We consider the model qualitatively presented by Figure 4.

Note: we assume that the distances ¢go — g3 and g4 — g5
are such that substantially lower the tunneling probability,
and therefore the tunneling “velocity”. That is, the tun-
neling in the pairs (the “zones”), (¢1,¢2), (¢3,94), (¢5,96),
can be considered as substantially greater than the tun-
neling between the “zones” (i.e., the transitions g2 — g3,
and qq — Q5).

According to the simplifications in Section 3.1, we
introduce Wis = W3y = Wsg = W = const., while
Was = Wys = w ~ 0.01W. Then equation (6) becomes:

P =W(P, - P)

Py =WP +wPs — (W 4 w)P;
Py =wPy + WPy — (W +w)Ps
Py =WPs+wPs — (W +w)P,
Ps = WPy + WPs — W(W +w)Ps
Ps = W(Ps — Ps).
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In full analogy with the case (b) one obtains the solutions:

2P, = Cy + 1.015C5 exp(—0.015Wt)
—0.995C5 exp(—2.005Wt) + 1.005Cy exp(—0.005Wt)
— Cs exp(—2Wt) — 0.985Cs exp(—2.015Wt)

2Ps = C + 1.015C, exp(—0.015Wt)
—0.995C5 exp(—2.005Wt) — 1.005C exp(—0.005W¢)
+ Cs exp(—2Wt) + 0.985C exp(—2.015WWt)

2Py = C) + C exp(—0.015Wt) + Cs exp(—2.005Wt)
+ Cy exp(—0.005Wt) + C5 exp(—2Wt)
+ Cs exp(—2.015W¢)

2P; = Cy + Cz exp(—0.015Wt) 4+ C3 exp(—2.005Wt)
— Cyexp(—0.005Wt) — C5 exp(—2Wt)
— Cg exp(—2.015W¢)

2P; = Cy —2.015C5 exp(—0.015Wt)
— 0.005C; exp(—2.005Wt) + 0.005Cy exp(—0.005Wt)
+ C5 exp(—2Wt) — 2Cq exp(—2.015Wt)

2P4 = Cl — 201502 exp(—0.015Wt)
—0.005C5 exp(—2.005Wt) — 0.005C exp(—0.005W¢)
— Cs exp(—2Wt) + 2Cs exp(—2.015Wt). (32)

For the initial condition P;(t = 0) = 1 one obtains:

0121/3, 02%1/6, 03:—1/2,
Cyi~1/2, Cs=~—-0.334, Cs~ —0.166,
while for Po(t =0) = 1:
Ch :1/3, CQN0.164, 03%]./2,
Ci=1/2, C5~0.334, Cs~0.168,
and for P3(t =0) =1,
Cy=1/3, Cy~—-0.33, (3~ —0.0025,
Cy = 0.0025, Cs5=~0.332, Cs~ —0.334.

These results correspond to the next values of entropy,
respectively:

S = 0.844k
5" = 0.898k
S" = 1.066k. (33)

Note: the maximal value of entropy
equation (28).

is given by

3.3 Analysis of the results

The cases (a)-(c) are typical, in the sense that they exhibit
all the qualitative features of the process of the tunnel-
ing in the associative neural networks, involving the finite
number of the “patterns” (potential wells). Actually, the
number of the wells can be increased, but the main qual-
itative results maintain their respectability.
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It is interesting to note that throughout the calcula-
tions, we need not to employ the concrete values of the
tunneling “velocity”, W. Rather, if the tunneling can oc-
cur at all, the occurrence of the process studied above is
just a matter of the time azes, i.e., of the ratio Tstab/Ttun-
Nothing else is required — except the assumptions given in
Section 3.1, to be discussed in Section 4.

Let wus distinguish the physical role of entropy
equation (5). As it is well-known [13], entropy repre-
sents a measure of ignorance about the physical state
of the system. This interpretation directly follows [13]
from equation (5). (Certainly, Eq. (5) follows from the
von Neumann’s entropy S = —ktr(plnp) — p being the
“density matrix” of the system (here: of the net) — where
the “trace” operation is over the eigenstates of p; here:
the eigenstates are the quantum-mechanical counterpart
of the “patterns”, which represent the mutually distin-
guishable (i.e., orthogonal) states.) That is, entropy is a
measure of the classical indeterminism: a system is in a
definite state, but the state is not known with certainty,
and increase of entropy coincides with the loss of the in-
formations concerning the physical state of the system. As
regards the associative neural nets, instead of being in a
(classically stable, unique) state, e.g., g1, a net appears
(in instant Tgap) to be in another state — for instance, go.
In what state the system can be found — probabilistically
—is “measured” by entropy.

It is characteristic for all the stochastic processes that
in the limit ¢ — oo, the system reaches the equilibrium
probability distribution. That is, for each the net, after
sufficiently long time interval, the system would be equally
probably found in either of the “wells”.

However, and this is another specific feature of our
considerations, the ratio Tgstah/7tun 1S finite, and there-
fore we are concerned with the transitional processes [14],
rather than with the equilibrium state. It is important
to note: as regards the transitional processes, there are
no the statements of the general relevance. Rather, one
should carefully investigate the behavior of the system for
the different, finite time intervals/instants, for each model
separately. Let us therefore focus on the results obtained
in the previous subsection.

The expressions (12, 13), (25, 26), (32), exhibit de-
pendence of the probability distribution(s) upon the ini-
tial state of the system. It can be shown (which will be
omitted here) that the probability distribution(s) exhibit
somewhat unexpected behavior. (E.g., one may obtain in
the case (b) — ¢f. Sect. 3.2.2 — that some probability in the
interval [0, Tstap] exhibit existence of the mazimal value(s),
which hardly can be considered expectable from the only
qualitative considerations — rather, one would expect that
the probabilities monotonically approach to the equilib-
rium distribution.) As regards the increase of entropy, the
results exhibit the expected characteristics for each case
separately. E.g., the expressions (33) exhibit the lower in-
crease of entropy if the initial state is closer to the edges
of the ¢ — V plot.

As regards the comparison of the cases studied, one
directly observes that increase of the number of the min-

The European Physical Journal B

ima implies increase of the entropy — as it can be plau-
sibly expected. And this is of special interest in physical
modeling of the associative neural nets, particularly since
the big number of the minima and their high “density”
are welcome for enhancing the memory capabilities of the
nets. This points to a need to obtain, at least a qualita-
tive, notion on the possible forms of the g—V plots, which
“minimize” the increase of entropy.

The case (c) clearly points to — in this sense — prefer-
able form of the ¢ — V' configuration(s) — the “zone” struc-
ture: i.e., to mutually distant groups of not-very-numerous
densely “packed” minima. In relatively short time inter-
vals (cf. point (iii) of Sect. 3.1, and further Sect. 4), one
may expect relatively slow increase, and relatively small
the final value of entropy. This can be directly seen by
comparing the values (33) with the values (29), and (30)
— the later being referred to the case (b), in which there
are no the “zones”. Alternatively, this can be also seen by
noting that the probabilities of the neighbor wells in the
“zones” are of mutually equal order of magnitude, while
the probability ratios concerning the different “zones” are
not.

4 Discussion

Our strategy in investigating the quantum-mechanical ef-
fects in the associative neural networks relies upon the
assumption (cf. Introduction) that the nets can be con-
sidered as the macroscopic (“classical”) physical systems.
Physical background of this assumption is that the nets
represent the open quantum systems. That is, we adopt the
generally employed hypothesis of universally valid quan-
tum mechanics, in which context the macroscopic behav-
ior follows as a consequence of the influence of the envi-
ronment. To this end it is important to stress: there are
the two different levels of the influence of the environ-
ment — which must not be mutually identified. First, it
is the effect of decoherence, which destroys the quantum-
mechanical coherence on a very short time scale. Second,
it is the influence of the environment on the (approxi-
mately) deterministic behavior of the system — which has
previously “survived” the decoherence; this is exactly the
influence distinguished in Section 1 which, in contrast to
the decoherentization, is not continuous in time (thus al-
lowing for considering 7sap > 0).

Throughout the paper we suppose the occurrence of
the tunneling in the networks. However, this is really a
subtle question.

As it was distinguished in Section 2.1, in order to be
sure in this concern, one should answer a few questions.
First, one should know the values of the parameters, w,,
Vo and 6q — c¢f. Figure 1. Second, one should know the
ratio Tstab/Ttun; certainly, if Tstab/Tiun IS greater than, or
of the order of unity, then the tunneling does not occur.
Third, one should know about the relative depth of the
local minima from/to which the tunneling might occur.

With this regard, nonexistence of the necessary data
put the obstacles in investigating the tunneling in asso-
ciative neural nets; by definition, the tunneling does not
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require any external stimuli (which is contrary to the ther-
mal activation [10]). In order to making at least a qualita-
tive results in this concern, we have considered the ide-
alized, typical models (the cases (a)-(c)), based on the
simplifications (i)-(iii) of Section 3.1. Particularly, we have
considered the minima of equal depth, so requiring no
energy exchange between the “particle” and its environ-
ment. Similarly, we have plausibly adopted equal distance
between the minima — which directly justifies the sim-
plification (ii), in which W,,,, = W, Vm,n. It is impor-
tant to note that these idealizations do not make the
considerations only weakly concerned with the realistic
processes. Actually, the models considered can be eas-
ily extended so as to refer to the realistic ¢ — V' plots
(cf. Fig. 2a). In general, the tunneling can interfere with
the different stochastic processes (e.g., the activation pro-
cess [10], which formally has the same effect as the one
here studied), including the MQC effect [11], and appar-
ently the net effect would be increase of the quantum fluc-
tuations. Therefore, the results obtained in Section 3 give
the “lower bound” of the possible, realistic quantum fluc-
tuations, whose analogue has been experimentally veri-
fied [7,9] on very low temperatures. Yet, the assumption
of existence of the equal-depth minima is somewhat re-
strictive. For it assumes equally learned contents, which
is a feature of the “well trained” nets, rather than of the
general case.

It is important to note that the interval 7gap,, in gen-
eral, can take both extremal values, Ty < 1, likewise
Tstab > 1, depending on a model and on the actual physi-
cal situation. On the other side, the interval ¢,y is usually
considered to be very short on a macroscopic time-scale.
However, due to the “openness” of the neural nets, and in
accordance with the experience with MQT effect [7,9], one
may expect that the interval 7, is typically substantially
longer than for an isolated quantum system. This gives a
background for the assumptions (i), and (iii) — that the
ratio Tstab/Ttun 1S findte (rather than 7etap/Tun > 1, as for
the isolated systems).

As it was clearly distinguished in Section 2.2, the tun-
neling in the associative neural nets can be dynamically
modeled by the Pauli master equation. A few words are
in order to justifying the self-consistency of our consider-
ations. Actually, it is well-known [8] that the Pauli master
equation bears irreversibility, and therefore — by definition
— refers only to the open systems. On the other side, this
equation does not apply to the extremal time intervals: for
very short time intervals, or to the limit ¢ — oo. First, this
is in accordance with the statement (cf., e.g., Grigolini [8])
that validity of the Pauli master equation assumes the pre-
vious occurrence of the process of decoherence; and this
puts the limitation on the lower time-bound. As regards
the upper time bound, we have already distinguished it in
Introduction: it is the time interval Tg;a1, which needs not
to be macroscopically long.

Therefore, the physical picture we are here concerned
with is completely consistent: The interaction of the “par-
ticle” with its environment has the two aspects. First, it
produces the decoherence effect, thus providing the (ap-
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Fig. 5. The typical, qualitative dependence of the tunneling
velocity, W, on time, t. Note that the interval € is macroscop-
ically very short. The solid line refers to the open, while the
dotted line refers to the isolated quantum systems. For clar-
ity, the dotted line is not put as it should — very close to the
vertical axis.

proximately) “classical” (deterministic) behavior of the
system. So the “patterns” appear as the well-defined
macroscopic states. Second, the influence drives the “clas-
sical” behavior of the “particle”; the average time dura-
tion of the “pauses” between them is denoted by 7gtap. So,
the effects considered here take a part (relatively) long
after the decoherentization has actually occurred, and in
between the two external stimuli — in full agreement with
the foundations (cf., e.g., Grigolini [8]) of the Pauli master
equation.

Now one directly justifies the simplification (ii) of the
Section 3.1: there we have assumed the time independence
of the tunneling “velocity”, W. Actually, as it is well-
known [7], even for the open quantum systems the ac-
celeration of the tunneling process is exponential in time,
bearing the substantial change of the probability in the
very short time intervals. Later, the rate of change of the
tunneling probability, in absolute units, is very small, so
one can approximate this change (at least in the zeroth
order of approximation), and its “velocity”, W, by a con-
stant value. This is qualitatively presented by Figure 5.
Note: the significant change of the tunneling “velocity” is
during the time intervals of the order of a very short in-
terval, e. Then the absolute rate of change of W is rather
small — see the almost flat part of the plot. And, as distin-
guished above, the Pauli master equation even does not
apply for the intervals of the order of €, but rather to the
intervals corresponding to the almost flat part of the plot
in Figure 5 (right from “€”), for which W is of the almost
constant value.

Finally, throughout the paper we have been concerned
with the one-dimensional model of the “particle”. How-
ever, as it was distinguished in Introduction, the physi-
cal state of a neural net is presented by a vector q — a
“configuration” — which raises the task of the full formal
analysis of the tunneling process. Whilst the calculation
would complicate (a “pattern” is surrounded by more than
just two neighbor “patterns”), the qualitative results ob-
tained here maintain their respectability.
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5 Conclusion

We investigate the quantum-mechanical tunneling be-
tween the “patterns” of the associative neural networks.
This is really a macroscopic quantum effect which, if ever
takes place, should be considered unavoidable. The net ef-
fect of the tunneling between the “patterns” is a stochas-
tic process, the well-known “random walk” process, but
rather on a finite number of the possible “positions” (here:
the “patterns”). This dynamics can be modeled by the
Pauli master equation, and is likely to be referred to the
“transitional processes” — rather than to be concerned
with the limit ¢ — oo (which here also would lead to the
“equilibrium” probability distribution).

By analyzing the typical physical models, we obtain
that the, so-called, “zone” structure of the “configuration-
energy (¢ — V)" surfaces provides “minimizing” of the
quantum fluctuations, which are due to the tunneling. By
the “zone” structure we mean existence of the mutually
“distant” groups of the dense, approximately equal-depth
minima (“patterns”). This qualitative result is likely the
most that can be told, so far. For more informations it
is necessary to obtain some quantitative notions on the
q — V surfaces of the associative neural networks, which
could also help in making theoretical predictions concern-
ing distinguishing (cf. Ref. [7]) between the “pure” tun-
neling and the classical activation process.
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